
Package: mulea (via r-universe)
October 24, 2024

Type Package

Title Enrichment Analysis using Multiple Ontologies and False
Discovery Rate

Version 1.1.0

Date 2024-09-24

Description Background - Traditional gene set enrichment analyses are
typically limited to a few ontologies and do not account for
the interdependence of gene sets or terms, resulting in
overcorrected p-values. To address these challenges, we
introduce mulea, an R package offering comprehensive
overrepresentation and functional enrichment analysis. Results
- mulea employs a progressive empirical false discovery rate
(eFDR) method, specifically designed for interconnected
biological data, to accurately identify significant terms
within diverse ontologies. mulea expands beyond traditional
tools by incorporating a wide range of ontologies, encompassing
Gene Ontology, pathways, regulatory elements, genomic
locations, and protein domains. This flexibility enables
researchers to tailor enrichment analysis to their specific
questions, such as identifying enriched transcriptional
regulators in gene expression data or overrepresented protein
domains in protein sets. To facilitate seamless analysis, mulea
provides gene sets (in standardised GMT format) for 27 model
organisms, covering 22 ontology types from 16 databases and
various identifiers resulting in almost 900 files.
Additionally, the muleaData ExperimentData Bioconductor package
simplifies access to these pre-defined ontologies. Finally,
mulea's architecture allows for easy integration of
user-defined ontologies, or GMT files from external sources
(e.g., MSigDB or Enrichr), expanding its applicability across
diverse research areas. Conclusions - mulea is distributed as a
CRAN R package. It offers researchers a powerful and flexible
toolkit for functional enrichment analysis, addressing
limitations of traditional tools with its progressive eFDR and
by supporting a variety of ontologies. Overall, mulea fosters

1

2 Contents

the exploration of diverse biological questions across various
model organisms.

biocViews Annotation, DifferentialExpression, GeneExpression,
GeneSetEnrichment, GO, GraphAndNetwork, MultipleComparison,
Pathways, Reactome, Software, Transcription, Visualization

License GPL-2

Depends R (>= 4.0.0)

Imports data.table (>= 1.13.0), dplyr, fgsea (>= 1.0.2), ggplot2,
ggraph (>= 2.0.3), magrittr (>= 2.0.3), methods, parallel (>=
4.0.2), plyr (>= 1.8.4), Rcpp, readr, rlang, scales, stats,
stringi, tibble, tidygraph, tidyverse

Suggests devtools, knitr, rmarkdown, testthat (>= 3.1.4)

LinkingTo Rcpp

VignetteBuilder knitr

URL https://github.com/ELTEbioinformatics/mulea

BugReports https://github.com/ELTEbioinformatics/mulea/issues

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

Config/testthat/edition 3

Encoding UTF-8

Repository https://eltebioinformatics.r-universe.dev

RemoteUrl https://github.com/eltebioinformatics/mulea

RemoteRef HEAD

RemoteSha 47dcc2878a2b88cf904ca162aab1c03c92455e08

Contents
filter_ontology . 3
gsea-class . 4
list_to_gmt . 6
MuleaHypergeometricTest-class . 6
ora-class . 7
plot_barplot . 8
plot_graph . 10
plot_heatmap . 12
plot_lollipop . 14
read_gmt . 16
reshape_results . 17
run_test . 18
SetBasedEnrichmentTest-class . 21
SubramanianTest-class . 22
write_gmt . 23

https://github.com/ELTEbioinformatics/mulea
https://github.com/ELTEbioinformatics/mulea/issues

filter_ontology 3

Index 24

filter_ontology Filter Ontology

Description

Filtering ontology to contain entries having number of elements (genes or proteins) between a given
range. The reason for this is enrichment analysis results can sometimes be skewed by overly specific
or broad entries. Filtering ontologies allows you to customize the size of ontology entries, ensuring
your analysis aligns with your desired scope.

Usage

filter_ontology(gmt, min_nr_of_elements = NULL, max_nr_of_elements = NULL)

Arguments

gmt A data.frame which contains the entries (gene or protein sets), imported from
a GMT file with the read_gmt function.

min_nr_of_elements

Minimum number of elements. Ontology entries containing as many or fewer
elements (genes or proteins) will be excluded.

max_nr_of_elements

Maximum number of elements. Ontology entries containing as many or more
elements (genes or proteins) will be excluded.

Value

Return a data.framewhich contains the entries (gene or protein sets) in a similar format that pro-
duced by the read_gmt function.

Examples

library(mulea)

loading and filtering the example ontology from a GMT file
tf_gmt <- read_gmt(file = system.file(

package="mulea", "extdata",
"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))

tf_gmt_filtered <- filter_ontology(gmt = tf_gmt,
min_nr_of_elements = 3,
max_nr_of_elements = 400)

4 gsea-class

gsea-class Gene Set Enrichment Analysis (GSEA)

Description

An S4 class to represent the gsea tests in mulea.

Usage

S4 method for signature 'gsea'
run_test(model)

Arguments

model Object of S4 class representing the mulea test.

Value

GSEA object. This object represents the result of the gsea tests.

run_test method for GSEA object. Returns results of the enrichment analysis.

Methods (by generic)

• run_test(gsea): runs test calculations.

Slots

gmt A data.frame representing the ontology GMT.

element_names A vector of elements names (gene or protein names or identifiers) to include in
the analysis.

element_scores A vector of numeric values representing a score (e.g. p-value, z-score, log fold
change) for each ’element_name’, in the same number and order as element_name.

gsea_power A power of weight. Default value is 1.

element_score_type Defines the GSEA score type.

• ’pos’: Only positive element_scores
• ’neg’: Only negative element_scores
• ’std’: standard, containing both positive and negative scores Default value is ’std’.

number_of_permutations The number of permutations used in gsea test. Default value is 1000.

test character

gsea-class 5

Examples

library(mulea)

loading and filtering the example ontology from a GMT file
tf_gmt <- read_gmt(file = system.file(

package="mulea", "extdata",
"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))

tf_gmt_filtered <- filter_ontology(gmt = tf_gmt, min_nr_of_elements = 3,
max_nr_of_elements = 400)

loading the example `data.frame`
scored_gene_tab <- read.delim(file = system.file(package = "mulea", "extdata",

"ordered_set.tsv"))

creating the GSEA model
gsea_model <- gsea(gmt = tf_gmt_filtered,

the names of elements to test
element_names = scored_gene_tab$Gene.symbol,
the logFC-s of elements to test
element_scores = scored_gene_tab$logFC,
consider elements having positive logFC values only
element_score_type = "pos",
the number of permutations
number_of_permutations = 10000)

library(mulea)

loading and filtering the example ontology from a GMT file
tf_gmt <- read_gmt(file = system.file(package="mulea", "extdata",

"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))
tf_gmt_filtered <- filter_ontology(gmt = tf_gmt, min_nr_of_elements = 3,

max_nr_of_elements = 400)

loading the example `data.frame`
scored_gene_tab <- read.delim(file = system.file(package = "mulea", "extdata",

"ordered_set.tsv"))

creating the GSEA model
gsea_model <- gsea(gmt = tf_gmt_filtered,

the names of elements to test
element_names = scored_gene_tab$Gene.symbol,
the logFC-s of elements to test
element_scores = scored_gene_tab$logFC,
consider elements having positive logFC values only
element_score_type = "pos",
the number of permutations
number_of_permutations = 10000)

running the test
gsea_results <- run_test(gsea_model)

6 MuleaHypergeometricTest-class

list_to_gmt Convert a list to ontology (GMT) data.frame.

Description

Converts a list of ontology elements (gene sets) to an ontology (GMT) data.frame object.

Usage

list_to_gmt(gmt_list)

Arguments

gmt_list A list with named character vectors. The name will become the ’ontology_id’,
and the elements in the vector will become the ’list_of_values’ in the ontology
(GMT) data.frame.

Value

Returns ontology (GMT) data.frame where the ’ontology_name’ contains random unique strings.

Examples

library(mulea)

creating a list of gene sets
ontology_list <- list(gene_set1 = c("gene1", "gene2", "gene3"),

gene_set2 = c("gene4", "gene5", "gene6"))

converting the list to a ontology (GMT) object
new_ontology_object <- list_to_gmt(ontology_list)

MuleaHypergeometricTest-class

PRIVATE class : An S4 class to represent a Hypergeometric tests in
mulea.

Description

PRIVATE class : An S4 class to represent a Hypergeometric tests in mulea.

Usage

S4 method for signature 'MuleaHypergeometricTest'
run_test(model)

ora-class 7

Arguments

model Object of s4 class represents mulea Test.

Value

MuleaHypergeometricTest object. Used as private function.

run_test method for MuleaHypergeometricTest object. Used as private function.

Methods (by generic)

• run_test(MuleaHypergeometricTest): runs test calculations.

Slots

gmt A data.frame representing the GMT model.

element_names Data to be analysed across the model.

background_element_names Background data used for the test.

ora-class An S4 class to represent a set based tests in mulea.

Description

An S4 class to represent a set based tests in mulea.

Value

ora object. This object represents the result of the overrepresentation test in mulea.

Slots

method The overrepresentation (ora) method. Possible values: "Hypergeometric", "SetBasedEn-
richment".

gmt A data.frame representing the ontology GMT.

element_names A vector of elements names (gene or protein names or identifiers) representing the
target set to analyse. For example differentially expressed genes.

background_element_names A vector of elements names (gene or protein names or identifiers)
representing all the elements involved in the previous analyses For example all genes that
were measured in differential expression analysis.

p_value_adjustment_method A character string representing the type of the p-value adjustment
method. Possible values:

• ’eFDR’: empirical false discovery rate correction method
• all method options from stats::p.adjust documentation.

number_of_permutations A numeric value representing the number of permutations used to cal-
culate the eFDR values. Default value is 10000.

8 plot_barplot

nthreads Number of processor’s threads to use in calculations.

random_seed Optional natural number (1, 2, 3, ...) setting the seed for the random generator, to
make the results reproducible.

Examples

library(mulea)

loading and filtering the example ontology from a GMT file
tf_gmt <- read_gmt(file = system.file(

package="mulea", "extdata",
"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))

tf_gmt_filtered <- filter_ontology(gmt = tf_gmt, min_nr_of_elements = 3,
max_nr_of_elements = 400)

loading the example data
sign_genes <- readLines(system.file(package = "mulea", "extdata",

"target_set.txt"))
background_genes <- readLines(system.file(package="mulea", "extdata",

"background_set.txt"))

creating the ORA model
ora_model <- ora(gmt = tf_gmt_filtered,

the test set variable
element_names = sign_genes,
the background set variable
background_element_names = background_genes,
the p-value adjustment method
p_value_adjustment_method = "eFDR",
the number of permutations
number_of_permutations = 10000,
the number of processor threads to use
nthreads = 2)

running the ORA
ora_results <- run_test(ora_model)

plot_barplot Plot Barplot

Description

Plots barplot of p-values.

Usage

plot_barplot(
reshaped_results,
ontology_id_colname = "ontology_id",
selected_rows_to_plot = NULL,

plot_barplot 9

p_value_type_colname = "eFDR",
p_value_max_threshold = 0.05

)

Arguments

reshaped_results

’data.table’ in relaxed form, obtained as the output of the reshape_results
function. The data source for generating the barplot.

ontology_id_colname

Character, specifies the column name that contains ontology IDs in the input
data.

selected_rows_to_plot

A numeric vector specifying which rows of the reshaped results ’data.frame’
should be included in the plot. Default is ’NULL’.

p_value_type_colname

Character, specifies the column name for p-values in the input data. Default is
’eFDR’.

p_value_max_threshold

Numeric, representing the maximum p-value threshold for filtering data. Default
is 0.05.

Details

Create a customized barplot of p-values, facilitating visual exploration and analysis of statistical
significance within ontology categories.

Value

Returns a barplot.

See Also

reshape_results

Examples

library(mulea)

loading and filtering the example ontology from a GMT file
tf_gmt <- read_gmt(file = system.file(package="mulea", "extdata",

"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))
tf_gmt_filtered <- filter_ontology(gmt = tf_gmt, min_nr_of_elements = 3,

max_nr_of_elements = 400)

loading the example data
sign_genes <- readLines(system.file(package = "mulea", "extdata",

"target_set.txt"))
background_genes <- readLines(system.file(

package="mulea", "extdata", "background_set.txt"))

10 plot_graph

creating the ORA model
ora_model <- ora(gmt = tf_gmt_filtered,

the test set variable
element_names = sign_genes,
the background set variable
background_element_names = background_genes,
the p-value adjustment method
p_value_adjustment_method = "eFDR",
the number of permutations
number_of_permutations = 10000,
the number of processor threads to use
nthreads = 2)

running the ORA
ora_results <- run_test(ora_model)

reshaping results for visualisation
ora_reshaped_results <- reshape_results(model = ora_model,

model_results = ora_results,
choosing which column to use for the indication of significance
p_value_type_colname = "eFDR")

Plot barplot
plot_barplot(reshaped_results = ora_reshaped_results,

the column containing the names we wish to plot
ontology_id_colname = "ontology_id",
upper threshold for the value indicating the significance
p_value_max_threshold = 0.05,
column that indicates the significance values
p_value_type_colname = "eFDR")

plot_graph Plot Graph (Network)

Description

Plots graph representation of enrichment results.

Usage

plot_graph(
reshaped_results,
ontology_id_colname = "ontology_id",
ontology_element_colname = "element_id_in_ontology",
shared_elements_min_threshold = 0,
p_value_type_colname = "eFDR",
p_value_max_threshold = 0.05

)

plot_graph 11

Arguments

reshaped_results

Character, the input data.table containing the reshaped results.
ontology_id_colname

Character, the name of the column in the reshaped results that contains ontology
identifiers or names. Default value is ’ontology_id’.

ontology_element_colname

Character, the name of the column in the reshaped results that contains element
identifiers within the ontology. Default value is ’element_id_in_ontology’.

shared_elements_min_threshold

Numeric, threshold specifying the minimum number of shared elements re-
quired between two ontologies to consider them connected by an edge on the
graph. Default value is 0.

p_value_type_colname

Character, the name of the column in the reshaped results that contains the type
of p-values associated with the ontology elements. Default value is ’eFDR’.

p_value_max_threshold

Numeric, a threshold value for filtering rows in the reshaped results based on
the p-values. Rows with p-values greater than this threshold will be filtered out.
Default value is 0.05.

Details

This function generates a graph (network) visualization of the enriched ontology entries. On the
plot each node represents an ontology entry below a given p-value threshold, and is coloured based
on its significance level. A connection (edge) is drawn between two nodes if they share at least one
common element (gene) belonging to the target set – in the case of ORA results – or all analysed
elements – in the case of GSEA results.

Value

Returns a graph plot.

See Also

reshape_results

Examples

library(mulea)

loading and filtering the example ontology from a GMT file
tf_gmt <- read_gmt(file = system.file(package="mulea", "extdata",

"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))
tf_gmt_filtered <- filter_ontology(gmt = tf_gmt, min_nr_of_elements = 3,

max_nr_of_elements = 400)

loading the example data
sign_genes <- readLines(system.file(package = "mulea", "extdata",

12 plot_heatmap

"target_set.txt"))
background_genes <- readLines(system.file(

package="mulea", "extdata", "background_set.txt"))

creating the ORA model
ora_model <- ora(gmt = tf_gmt_filtered,

the test set variable
element_names = sign_genes,
the background set variable
background_element_names = background_genes,
the p-value adjustment method
p_value_adjustment_method = "eFDR",
the number of permutations
number_of_permutations = 10000,
the number of processor threads to use
nthreads = 2)

running the ORA
ora_results <- run_test(ora_model)

reshaping results for visualisation
ora_reshaped_results <- reshape_results(model = ora_model,

model_results = ora_results,
choosing which column to use for the indication of significance
p_value_type_colname = "eFDR")

Plot graph
plot_graph(reshaped_results = ora_reshaped_results,

the column containing the names we wish to plot
ontology_id_colname = "ontology_id",
upper threshold for the value indicating the significance
p_value_max_threshold = 0.05,
column that indicates the significance values
p_value_type_colname = "eFDR")

plot_heatmap Plot Heatmap

Description

Plots heatmap of enriched terms and obtained p-values.

Usage

plot_heatmap(
reshaped_results,
ontology_id_colname = "ontology_id",
ontology_element_colname = "element_id_in_ontology",
p_value_type_colname = "eFDR",
p_value_max_threshold = 0.05

)

plot_heatmap 13

Arguments

reshaped_results

data.table in relaxed form, obtained as the output of the reshape_results func-
tion. The data source for generating the barplot.

ontology_id_colname

Character, specifies the column name that contains ontology IDs in the input
data.

ontology_element_colname

Character, specifying the column name that contains ontology elements or terms
in the input data. Default: ’element_id_in_ontology’.

p_value_type_colname

Character, specifies the column name for p-values in the input data. Default is
’eFDR’.

p_value_max_threshold

Numeric, representing the maximum p-value threshold for filtering data. Default
is 0.05.

Details

The plot_heatmap function provides a convenient way to create a ggplot2 heatmap illustrating the
significance of enriched terms within ontology categories based on their associated p-values.

Value

Returns a ggplot2 heatmap.

See Also

reshape_results

Examples

library(mulea)

loading and filtering the example ontology from a GMT file
tf_gmt <- read_gmt(file = system.file(package="mulea", "extdata",

"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))
tf_gmt_filtered <- filter_ontology(gmt = tf_gmt, min_nr_of_elements = 3,

max_nr_of_elements = 400)

loading the example data
sign_genes <- readLines(system.file(package = "mulea", "extdata",

"target_set.txt"))
background_genes <- readLines(system.file(

package="mulea", "extdata", "background_set.txt"))

creating the ORA model
ora_model <- ora(gmt = tf_gmt_filtered,

the test set variable
element_names = sign_genes,

14 plot_lollipop

the background set variable
background_element_names = background_genes,
the p-value adjustment method
p_value_adjustment_method = "eFDR",
the number of permutations
number_of_permutations = 10000,
the number of processor threads to use
nthreads = 2)

running the ORA
ora_results <- run_test(ora_model)

reshaping results for visualisation
ora_reshaped_results <- reshape_results(

model = ora_model,
model_results = ora_results,
choosing which column to use for the indication of significance
p_value_type_colname = "eFDR")

Plot heatmap
plot_heatmap(reshaped_results = ora_reshaped_results,

the column containing the names we wish to plot
ontology_id_colname = "ontology_id",
column that indicates the significance values
p_value_type_colname = "eFDR")

plot_lollipop Plot Lollipop

Description

Plots lollipop plot of p-values.

Usage

plot_lollipop(
reshaped_results,
ontology_id_colname = "ontology_id",
selected_rows_to_plot = NULL,
p_value_type_colname = "eFDR",
p_value_max_threshold = 0.05

)

Arguments

reshaped_results

data.table in relaxed form, obtained as the output of the reshape_results func-
tion. The data source for generating the barplot.

ontology_id_colname

Character, specifies the column name that contains ontology IDs in the input
data.

plot_lollipop 15

selected_rows_to_plot

A numeric vector specifying which rows of the reshaped results data frame
should be included in the plot. Default is NULL. frame should be included
in the plot?

p_value_type_colname

Character, specifies the column name for p-values in the input data. Default is
’eFDR’.

p_value_max_threshold

Numeric, representing the maximum p-value threshold for filtering data. Default
is 0.05.

Details

Create a customized lollipop plot of p-values, facilitating visual exploration and analysis of statisti-
cal significance within ontology categories.

Value

Returns a lollipop plot

See Also

reshape_results

Examples

library(mulea)

loading and filtering the example ontology from a GMT file
tf_gmt <- read_gmt(file = system.file(package="mulea", "extdata",

"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))
tf_gmt_filtered <- filter_ontology(gmt = tf_gmt, min_nr_of_elements = 3,

max_nr_of_elements = 400)

loading the example data
sign_genes <- readLines(system.file(package = "mulea", "extdata",

"target_set.txt"))
background_genes <- readLines(system.file(

package="mulea", "extdata", "background_set.txt"))

creating the ORA model
ora_model <- ora(gmt = tf_gmt_filtered,

the test set variable
element_names = sign_genes,
the background set variable
background_element_names = background_genes,
the p-value adjustment method
p_value_adjustment_method = "eFDR",
the number of permutations
number_of_permutations = 10000,
the number of processor threads to use

16 read_gmt

nthreads = 2)
running the ORA
ora_results <- run_test(ora_model)

reshaping results for visualisation
ora_reshaped_results <- reshape_results(

model = ora_model,
model_results = ora_results,
choosing which column to use for the indication of significance
p_value_type_colname = "eFDR")

Plot lollipop
plot_lollipop(reshaped_results = ora_reshaped_results,

the column containing the names we wish to plot
ontology_id_colname = "ontology_id",
upper threshold for the value indicating the significance
p_value_max_threshold = 0.05,
column that indicates the significance values
p_value_type_colname = "eFDR")

read_gmt Read GMT File

Description

Reads gene set or ontology data from a Gene Matrix Transposed (GMT) file and parse into a
data.frame.

Usage

read_gmt(file)

Arguments

file Character, a path to a file.

Value

Returns a data.frame with three columns:

• ’ontology_id’: Ontology identifier that uniquely identifies the element within the referenced
ontology.

• ’ontology_name’: Ontology name or description that provides a user-friendly label or textual
description for the ’ontology_id’.

• ’list_of_values’: Associated genes or proteins that is a vector of identifiers of genes or proteins
belonging to the ’ontology_id’.

reshape_results 17

Examples

import example gene set
library(mulea)
tf_gmt <- read_gmt(file = system.file(

package="mulea", "extdata",
"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))

reshape_results Reshape Results

Description

This function takes a model and model_results data, reshapes them into a suitable format for plot-
ting, and returns the resulting data frame, which can be used for further analysis or visualization.

Usage

reshape_results(
model = NULL,
model_results = NULL,
model_ontology_col_name = "ontology_id",
ontology_id_colname = "ontology_id",
p_value_type_colname = "eFDR",
p_value_max_threshold = TRUE

)

Arguments

model a mulea model, created by the ora or the gsea functions.

model_results Result data.frame returned by the run_test function.
model_ontology_col_name

Character, specifies the column name in the model that contains ontology IDs. It
defines which column in the model should be used for matching ontology IDs.
Possible values are ’ontology_id’ and ’ontology_name’. The default value is
’ontology_id’.

ontology_id_colname

Character, specifies the column name for ontology IDs in the model results. It
indicates which column in the model results contains ontology IDs for merging.
Possible values are ’ontology_id’ and ’ontology_name’. The default value is
’ontology_id’.

p_value_type_colname

Character, specifies the column name for the type or raw or adjusted p-value in
the result data.frame returned by the run_test function. The default value is
’eFDR’.

p_value_max_threshold

Logical, indicating whether to apply a p-value threshold when filtering the re-
sulting data. If TRUE, the function filters the data based on a p-value threshold.

18 run_test

Value

Return detailed and relaxed data.table where model and results are merged for plotting purposes.

See Also

plot_graph, plot_barplot, plot_heatmap

Examples

library(mulea)

loading and filtering the example ontology from a GMT file
tf_gmt <- read_gmt(file = system.file(package="mulea", "extdata",

"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))
tf_gmt_filtered <- filter_ontology(gmt = tf_gmt, min_nr_of_elements = 3,

max_nr_of_elements = 400)

loading the example data
sign_genes <- readLines(system.file(

package = "mulea", "extdata", "target_set.txt"))
background_genes <- readLines(

system.file(package="mulea", "extdata", "background_set.txt"))

creating the ORA model
ora_model <- ora(gmt = tf_gmt_filtered,

the test set variable
element_names = sign_genes,
the background set variable
background_element_names = background_genes,
the p-value adjustment method
p_value_adjustment_method = "eFDR",
the number of permutations
number_of_permutations = 10000,
the number of processor threads to use
nthreads = 2)

running the ORA
ora_results <- run_test(ora_model)

reshaping results for visualisation
ora_reshaped_results <- reshape_results(model = ora_model,

model_results = ora_results,
choosing which column to use for the indication of significance
p_value_type_colname = "eFDR")

run_test Run enrichment analysis procedure

Description

This is a generic function that chooses an enrichment analysis procedure based on the model class
and runs the analysis.

run_test 19

Usage

run_test(model)

S4 method for signature 'ora'
run_test(model)

Arguments

model Object of S4 class representing the mulea test.

Details

The function requires the definition of a model. Models currently implemented in mulea include
Gene Set Enrichment Analysis (GSEA) and Over-Representation Analysis (ORA). These models
must be defined through their specific functions which are provided in this package.

Value

Results in form of data.frame. Structure of data.frame depends on object processed by this
generic method. In the case of run_test was used with the model generated by the ora function
the returned data.frame contains the following columns:

1. ’ontology_id’: Identifiers of the ontology elements.

2. ’ontology_name’: Names of the ontology elements.

3. ’nr_common_with_tested_elements’: Number of common elements between the ontology el-
ement and the vector defined by the element_names parameter of the ora function.

4. ’nr_common_with_background_elements’: Number of common elements between the ontol-
ogy element and the vector defined by the background_element_names parameter of the ora
function.

5. ’p_value’: The raw p-value of the overrepresentation analysis.

6. The adjusted p-value. The column named based on the p_value_adjustment_method parame-
ter of the ora function, e.g. ’eFDR’

In the case of run_test was used with the model generated by the gsea function the returned
data.frame contains the following columns:

1. ’ontology_id’: Identifiers of the ontology elements.

2. ’ontology_name’: Names of the ontology elements.

3. ’nr_common_with_tested_elements’: Number of common elements between the ontology el-
ement and the vector defined by the element_names parameter of the gsea function.

4. ’p_value’: The raw p-value of the gene set enrichment analysis.

5. ’adjusted_p_value’: The adjusted p-value.

run_test method for ora object. Returns the results of the overrepresentation analysis.

Methods (by class)

• run_test(ora): ora test.

20 run_test

See Also

gsea, ora

Examples

library(mulea)

loading and filtering the example ontology from a GMT file
tf_gmt <- read_gmt(file = system.file(package="mulea", "extdata",

"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))
tf_gmt_filtered <- filter_ontology(gmt = tf_gmt, min_nr_of_elements = 3,

max_nr_of_elements = 400)

loading the example data
sign_genes <- readLines(system.file(package = "mulea", "extdata",

"target_set.txt"))
background_genes <- readLines(system.file(package="mulea", "extdata", "

background_set.txt"))

creating the ORA model
ora_model <- ora(gmt = tf_gmt_filtered,

the test set variable
element_names = sign_genes,
the background set variable
background_element_names = background_genes,
the p-value adjustment method
p_value_adjustment_method = "eFDR",
the number of permutations
number_of_permutations = 10000,
the number of processor threads to use
nthreads = 2)

running the ORA
ora_results <- run_test(ora_model)

library(mulea)

loading and filtering the example ontology from a GMT file
tf_gmt <- read_gmt(file = system.file(

package="mulea", "extdata",
"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))

tf_gmt_filtered <- filter_ontology(gmt = tf_gmt, min_nr_of_elements = 3,
max_nr_of_elements = 400)

loading the example data
sign_genes <- readLines(system.file(package = "mulea", "extdata",

"target_set.txt"))
background_genes <- readLines(system.file(package="mulea", "extdata",

"background_set.txt"))

creating the ORA model
ora_model <- ora(gmt = tf_gmt_filtered,

the test set variable

SetBasedEnrichmentTest-class 21

element_names = sign_genes,
the background set variable
background_element_names = background_genes,
the p-value adjustment method
p_value_adjustment_method = "eFDR",
the number of permutations
number_of_permutations = 10000,
the number of processor threads to use
nthreads = 2)

running the ORA
ora_results <- run_test(ora_model)

SetBasedEnrichmentTest-class

PRIVATE class : An S4 class to represent a Hypergeometric tests in
mulea.

Description

PRIVATE class : An S4 class to represent a Hypergeometric tests in mulea.

Usage

S4 method for signature 'SetBasedEnrichmentTest'
run_test(model)

Arguments

model Object of s4 class represents mulea Test.

Value

SetBasedEnrichmentTest object. Used as private function.

run_test method for SetBasedEnrichmentTest object. Used as private function.

Methods (by generic)

• run_test(SetBasedEnrichmentTest): runs test calculations.

Slots

gmt A data.frame representing GMT’s representation of model.

element_names A data from experiment to analyse across model.

pool A background data to count test.

nthreads Number of processor’s threads used in calculations.

random_seed Setup seed for random generator.

22 SubramanianTest-class

SubramanianTest-class PRIVATE class : An S4 class to represent a ranked based tests in
mulea.

Description

PRIVATE class : An S4 class to represent a ranked based tests in mulea.

Usage

S4 method for signature 'SubramanianTest'
run_test(model)

Arguments

model Object of s4 class represents mulea Test.

Value

data.frame with presented columns ’ontology_id’, ’ontology_name’, ’nr_common_with_tested_elements’,
’p_value’, ’adjusted_p_value’

run_test method for SubramanianTest object. Used as private function.

Methods (by generic)

• run_test(SubramanianTest): runs test calculations.

Slots

gmt A data.frame representing the ontology GMT.

element_names A vector of elements names (gene or protein names or identifiers) to include in
the analysis.

element_scores A vector of numeric values representing a score (e.g. p-value, z-score, log fold
change) for each ’element_name’, in the same number and order as element_name.

p A power of weight.

element_score_type Defines the GSEA score type.

• "pos": Only positive element_scores
• "neg": only negative element_scores - "neg" and mixed
• "std": standard – containing both positive and negative scores Default value is "std".

write_gmt 23

write_gmt Write GMT file

Description

Writes gene set or ontology data.frame with specific formatting (columns representing ontology
identifiers, descriptions, and associated lists of values) and writes it to a file in a standardized Gene
Matrix Transposed (GMT) file format.

Usage

write_gmt(gmt, file)

Arguments

gmt A data.frame containing the data to be written, imported from a GMT file with
the read_gmt function.

file Character, a path to a file.

Value

Returns the input as a GMT file at a specific location.

Examples

library(mulea)

loading and filtering the example ontology from a GMT file
tf_gmt <- read_gmt(file = system.file(

package="mulea", "extdata",
"Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt"))

writing the filtered ontology to a GMT file

write_gmt(
gmt = tf_gmt,
file = "Transcription_factor_RegulonDB_Escherichia_coli_GeneSymbol.gmt")

Index

filter_ontology, 3

gsea, 20
gsea (gsea-class), 4
gsea-class, 4

list_to_gmt, 6

MuleaHypergeometricTest
(MuleaHypergeometricTest-class),
6

MuleaHypergeometricTest-class, 6

ora, 20
ora (ora-class), 7
ora-class, 7

plot_barplot, 8, 18
plot_graph, 10, 18
plot_heatmap, 12, 18
plot_lollipop, 14

read_gmt, 16
reshape_results, 9, 11, 13, 15, 17
run_test, 18
run_test,gsea-method (gsea-class), 4
run_test,MuleaHypergeometricTest-method

(MuleaHypergeometricTest-class),
6

run_test,ora-method (run_test), 18
run_test,SetBasedEnrichmentTest-method

(SetBasedEnrichmentTest-class),
21

run_test,SubramanianTest-method
(SubramanianTest-class), 22

SetBasedEnrichmentTest
(SetBasedEnrichmentTest-class),
21

SetBasedEnrichmentTest-class, 21

SubramanianTest
(SubramanianTest-class), 22

SubramanianTest-class, 22

write_gmt, 23

24

	filter_ontology
	gsea-class
	list_to_gmt
	MuleaHypergeometricTest-class
	ora-class
	plot_barplot
	plot_graph
	plot_heatmap
	plot_lollipop
	read_gmt
	reshape_results
	run_test
	SetBasedEnrichmentTest-class
	SubramanianTest-class
	write_gmt
	Index

